INNOVATON IN DER PCB-TECHNOLOGIE

Waldkirch, 25.10.2017 Dirk Gennermann, Head of Product Marketing

AGENDA

- 1. PCB Market overview
- 2. Schweizer @ a glance
- 3. Funding projects at Schweizer
- 4. Power PCB Trends
- 5. Power PCB Trends with Embedding

The PCB Market: 58.3 bn USD in 2016

PCB Market by Industries

Different kinds of rigid PCB FABs

Lower Layer	Higher Layer	HDI	Super fine
Count	Count		Pitch

World PCB Output in 2016 in mio. USD by country

Source NTI

2,400 PCB Shops

Source NTI

Confidential - subject to NDA | Page 3

SCHWEIZER @ A GLANCE

- 168 years successful company history
- 116.1 Mio. € revenue in 2016
- 5th growth year in a row
- Automotive 76%, Industrial 18%, Other 6%
- >780 employees
- Partners: WUS, Infineon, Meiko, Elekonta
- A leading supplier for Sensor and Power PCB solutions
- ... with numerous substantial novel product concepts for tomorrows:

Schweizer and its global Partners

24/10/2017 | © Schweizer Electronic AG | SE/ SM

AUTOMOTIVE INDUSTRY WILL BE DISRUPTED

Tony Seba, Disruption Guru

"The Automotive Industry will be disrupted on **battery cells, sensors and social networks**."

IN 2030 ALL CARS WILL BE

- ELECTRIC
- AUTONOMOUS
- SHARED

24/10/2017 | © Schweizer Electronic AG | SE/ SM

SCHWEIZER TODAY SENSOR- & POWER PCB SOLUTIONS

	Sensor PCB Solutions				Power PCB Solutions			
	Autonomous Driving			CO ₂ Reduction				
Application Examples	Radar Sensors	Cameras		Optim of conv.	Drivetrain	LED Headlamps	Hybrid & E-Cars Drive – DC/DC – AC/DC	
PCB Solutions	77GHz Hybrid	FR4 Flex		"Bond view Source	e Continental	Power P	PCBS e.g.: IMS Board e.g.: Inlay Board	
Embedding Solutions	Due to further incr µ ² Pack®	easing performance- and mi	niaturisa ² Boarc	tion needs	s, many applicatio	ns will use Embedding Solution	ons in the Future	

Confidential - subject to NDA | Page 8

FUNDING PROJECTS AT SCHWEIZER

STRENGTHEN OUR CORE COMPETENCIES

24/10/2017 | © Schweizer Electronic AG | SE/ SM

VoLiFa 2020 Head Lamp

24/10/2017 | © Schweizer Electronic AG | SE/ NGP

Liquid Crystal HD head lamp

source: Hella

24/10/2017 | © Schweizer Electronic AG | SE/ SM

PCB FOR FOREFIELD MODULE

Innovation task:

- miniaturization
- More functions in less volume
- "More than Moore"

solution:

• Embedding of twelve components into PCB

24/10/2017 | © Schweizer Electronic AG | SE/ NGP

STRENGTHEN OUR CORE COMPETENCIES

24/10/2017 | © Schweizer Electronic AG | SE/ SM

IN DEVELOPMENT: NEW RADAR TECHNOLOGY

Impact on radar antennas

- Spec limit of traces today: undercut <20 µm
- New Technology: "no" undercut (~2 µm)
- Sharp antenna edges

Benefits for Layout

- 40 µm lines/spaces on HF side
- Via in pad without dimple

In development

24/10/2017 | © Schweizer Electronic AG | SE/ SM

EMBEDDING THE NEXT BIG TREND FOR HF

24/10/2017 | © Schweizer Electronic AG | SE/ SM

POWER PCB TRENDS

ELECTRICAL AND THERMAL PERFORMANCE OF A POWER DESIGN

POTENTIAL POWER OPTIONS

POWER PCBS

48/12V DC/DC DEMO

- in cooperation w/ (infineon
- 4 x 400 μm Cu & 4 x 70 μm Cu

- w/ Heavy Copper T² = 2,6 mm
- w/ Heavy Copper = 3,5 mm

ON-RESISTANCE LOSSES OF PCB MATTERS

High current system approach, combining

- High current MOSFET technology 84µOhm @ 25°C
- High current Inlay Board technology **29µOhm @ 25°C**

1. MOSFET losses P=I^{2*}R

P @ 300 A: @ 25°C: = 7,6 W (75%) @ 150°C: = 15,12W (79%)

2. PCB losses (2mm Inlay)

P @ 300 A: @ 25°C: = 2,6 W (25%) @ 150°C: = 4,05 W (21%)

POWER PCB TRENDS WITH EMBEDDING

EMBEDDING – WHAT'S THAT?

Embedding – requires a new business model & supply chain

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential - subject to NDA | Page 32

POWER ON DEMAND WITH SMART p² PACK® IN PARTNERSHIP WITH INFINEON

... join forces to establish a new Semiconductor & PCB solution

Confidential – subject to NDA | Page 33

SMART p² PACK GOAL

p² Pack® offers

either ~30%* less power dissipation

or ~50%* higher performance

compared to a conventional packaged MOSFET (w/ same Die Size) on PCB solution.

* Engineering estimate: exact % may vary depending on the specific application

EMBEDDING REQUIRES NEW SYSTEM CONSIDERATIONS

- 1. How to bring high currents "ON and OFF the PCB"?
- 2. How to connect Motor and Inverter?
- 3. How to connect the Logicand the Power PCB?
- 4. Component Placement?
- 5. Optimize the heat flow
- Performance TIM (and other new BAMA for High Tg and Voltage), Thickness, Isolation?
- 7. Water-, Air no Cooling?

p² PACK DEMONSTRATORS

BSG Demonstrator in cooperation w/ Continental and Infineon

Source: Conti

Starter Generator Solution Today

Inlay Board + Logic PCB

Smart p² Pack p² Pack with embedded MOSFETs

Solution Today

Auxiliary Drive Demonstrator in cooperation w/ Infineon

Heay Copper Solution

Smart p² Pack p² Pack with embedded MOSFETs

Confidential - subject to NDA | Page 38

COMPARISON OF "TOLL PACKAGE" W/ p² PACK DATASHEET LEVEL

infineon Ta	Target Data Sheet			E303N105	5N011	
OptiMOS [™] -5 Power-Transisto	or	Product Summary				
-		V _{DS}	100	V		
		R _{DS(on),max}	1.1	mΩ		
)	Die Size	30.25	mm²		
and the second						
		Die Thickness	105	μm		
		Die Thickness	105	<mark>µ</mark> m		
Parameter	Symbol	Die Thickness Conditions	105	um Values		Unit
Parameter	Symbol	Die Thickness Conditions	105	Values typ.	max.	Unit
Parameter Thermal characteristics ¹⁾	Symbol	Die Thickness Conditions	105 min.	um Values typ.	max.	Unit
Parameter Thermal characteristics ¹⁾ Thermal resistance, junction - Ba side	Symbol Ick R _{thub}	Die Thickness Conditions	105 min.	Values typ.	0.3	Unit
Parameter Thermal characteristics ¹⁾ Thermal resistance, junction - Ba side	Symbol Ick _{R thub}	Die Thickness Conditions -	105 min.	Values typ.	0.3	Unit
Parameter Thermal characteristics ¹⁾ Thermal resistance, junction - Ba side Drain-source on-state resistance	Symbol Ick R _{thuB}	Conditions - V _{GS} =6V, / _D =75A	105 min.	Values typ.	0.3	Unit K/W

Package Solution Preliminary Data Sheet IAUT300N10S5N015 (infineon OptiMOS[™]-5 Power-Transistor Product Summary Vps RoHS 100 V R_{DS(on)} 1.5 mΩ 1_D 300 A Symbol Conditions Values Unit Parameter min. typ. max. Thermal characteristics²⁾ R_{DS(on)} V_{GS}=6 V, I_D=75 A Drain-source on-state resistance 2.0 mΩ _ 1.6 V_{GS}=10 V, /_D=100 A 1.5 1.3 -→ 1,1 mOhm * 36% → 1,5 mOhm

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential - subject to NDA | Page 39

CHIP EMBEDDING OFFERS POTENTIAL TO FURTHER IMPROVE RELIABILITY

Powercycling p² Pack

*Zyklisierung mit 80K Hub gestartet, dann auf 120K gesteigert. Umrechnung 80K->120K mit angenommenen Coffin-Manson-Koeffizient=3 ** 4/5 der gesinterten 200μm Chip Muster haben bei Testabbruch EOL nicht erreicht. Schattierter Bereich symbolisiert qualitativ höheres Lebensdauerpotential.

- Chip: MOSFET, 60V
- LP-Material: Panasonic R14-T

- Testbedingungen: 120K Temperaturhub, 2s/2s Pulslänge
- EOL-Kriterien: el. Ausfall; Temperaturdrift >30K; R_{th} +20%

Silbergesinterte p² Pack Muster erreichten gegenüber den gelöteten Varianten eine deutlich höhere Beständigkeit beim Powercycling

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential – subject to NDA | Page 42

p² PACK HALF BRIDGE W/ EMBEDDED SHUNT

- Embedded Shunt: 0,05 to 0,1 mOhm.
- 0 300 A
- 0,5 30 mV
- Thermal Dissipation 4,5 9 W
- Temperature rise 3 5 K
- Contact resistance < 1%(Microvias) of nominal resistance value

p² PACK INDUSTRIALIZATION ROADMAP

POWER ON DEMAND – POTENTIAL SMART p² PACK APPLICATIONS

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential - subject to NDA | Page 47

SPHIN(X) 2 - M - O 100 KW DEMO

Highly integrated electric axle drive for passenger cars

Joint research project (01.01.2013 – 31.12.2016)

- ZF Friedrichshafen AG (project coordination)
- Daimler AG
- Infineon Technologies AG
- TLK Thermo GmbH
- Institut f
 ür Thermodynamik / Technische Universit
 ät Braunschweig

Power-PCB by Schweizer; inverter in p² Pack technology

Compact, highly integrated, scalable inverter

- U_{nenn} = 300 VDC
- $I_{max} = 450 A_{rms}$
- P_{max} = 100 kW

Confidential – subject to NDA | Page 48

APPLICATION FIT

Major	Applications	Block Diagram	Schematic View	Heavy Copper	Inlay	Cu IMS	p² Pack
LED	LED				Х	х	
Switch					Х		
Motor Drive	BLDC			Х	Х	Х	Х
DC/DC, AC/DC		H-Bridge DC/DC		Х	Х	х	Х

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential - subject to NDA | Page 49

MORE THAN PCBS

24/10/2017 | © Schweizer Electronic AG | SE/ SM

Confidential - subject to NDA | Page 50

more than PCBs