

The Reality about Energy Harvesting

Speaker's: Lorandt Fölkel M.Eng Field Application Engineer & Business Development Manager Iorandt.foelkel@we-online.de

Energy Harvesting = Energy for free?

- Energy harvesting has recently become a topic of much discussion with its potential to self-power autonomous devices for wearables, medical devices and for IoT (the Internet of Things)
- Examples of real life use cases demonstrating that Energy Harvesting has already progressed from the laboratory to commercial applications
- We need devices that are:
 - Wireless (avoid power and communications cables)
 - Totally autonomous
 - Highly reliable with backup battery lifetime up to 15~20 years

Energy Harvesting = Energy for free?

- We have to consider that the laws of physics are still valid.
- But wasted energy are everywhere
- We just need to :
 - find them
 - convert them (harvest)
 - transform them into electrical energy
 - to store it for the time when not used
 - recall it when needed

Source: Tyndall National Institute

Wireless IoT devices

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Basic consideration for Energy Harvesting

First step:

- calculate the total energy demand for your system
- watch out for your peak energy demand

4

Basic consideration for Energy Harvesting

Second step:

- consider the source capabilities
- check multiple source availability (solar, thermo, motion, chemical... etc.)
- watch out for the stability over the time (use a data logger)

Third step:

- choose the right harvester (transducer)
- build the right voltage converter (source impedance matching)
- consider an energy storage for back up
 - capacity bank
 - supercaps
 - ultracaps (Supercap/Lithium-Ion)
 - Li-Pol rechargeable

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Where to find "free energy"

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Energy Harvesting Kit "Gleanergy" with Battery lifetime extender

 Environment energy captured and converted into electricity for small autonomous devices making them self-sufficient.

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Energy Harvesting Kit – Power Demoboard DC2344A

Featuring:

- LTC3106 Solar Harvesting
 - Battery Lithium
 - Li-Ion Rechargeable
- LTC3107 TEG Harvesting
 - Battery Lithium
- LTC3330 Piezo Harvesting
 - Solar Harvesting
 - Battery Lithium
 - Supercap Balancer
- LTC3331 Piezo Harvesting
 - Solar Harvesting
 - Li-Ion Rechargeable
 - Supercap Balancer

Energy Harvesting Kit – µPC/RF Module Demoboard DC2321A

Featuring:

- TP5901 Dust assembly including ARM Cortex-M3 processor embedded with SmartMesh IP networking software (RF Module)
- E-Ink display for user feedback
- Two coulomb counters for battery data measurement
- Shield board headers and programming headers for development
- Optionally, use DC2510A shield board to connect extra components to the ADCs, GPIOs, and serial ports of the mote

LTC3330 Energy Harvesting Solar

Source: Linear Technology Corporation

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Typical Inductive Transducers

Average Power: 3W Downhill Peak Power: 4W Output Voltage: 6V @ 12Ω Load Felt Efficiency: <10%

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Typical Inductive Transducers

EM-1D-09

EM-1D-10

60x24x22	mm
32	cm ³
42	g
430	Ω
14.2	Hz
3.6	mW
0.11	mW/cm ³
85.7	mW/kg
12.4 - 16	Hz
	60x24x22 32 42 430 14.2 3.6 0.11 85.7 12.4 - 16

Generator Code: 151001200019

Vibration Generator

Vibration and Push-Button Generator

Generator Data		
Dimensions (L x W x H)	60x24x22	mm
Volume	32	cm ²
Mass	46.5	g
Inner Resistant	430	Ω
Resonant Frequency	47	Hz
Power Output (0.5g continous)	30	mW
Power Density	0.96	mW/cm ³
Specific Power	660	mW/kg
Frequency Range of 50% Power	42 - 48	Hz
Energy Output (1x Push Button)	1.5	mJ

Source: www.pmdm.de

Generator Code: 151001200018

EnOcean

Per Click 30µC 6.38V @ 4.7µF

Source: www.enocean-alliance.org

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Typical Inductive Transducers

Ferro Solutions

Size: $DxH = 6cm \times 6.75cm$

POWER OUTP	UT @ 60 HZ (Rec	tified DC Power)					
Acceleration	25 milli-g	0.3 mW					
	50 milli-g	1.3 mW					
	100 milli- <i>g</i>	5.2 mW					
BANDWIDTH ($\Delta f = 3 Hz$)							
Peak frequency	1	60 Hz					
50% power deli	+/-1.5 Hz						
Q @ 100 milli-g	1	18					

Perpetuum

Operates from prevalent 100Hz/ and 120Hz vibration bands found on electrical machines 1mW peak power at 0.025G with >2Hz halfpower bandwidth

Typically >0.3mW output on 95% of machines

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Examples for Piezo Transducers

PI Ceramic

The "Piezo Ruler" Size: 150 x 35 x 2,5 mm³

Made from DuraAct Transducers

Source: Linear Technology Corporation

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

EH-Kit: LTC3107 - TEG

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

What is behind the WE-EHPI transformer?

winding style

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Würth Elektronik eiSos components WE-EHPI

Characteristics:

- Low profile: 4 mm
- Small footprint 6 x 6 mm
- Very low secondary R_{DC}
- Multiple options of turn ratios available
- Separated welding/soldering pads for increased reliability
- Optimized winding technology for increased performance & reliability

Applications:

- Wireless fire, alarm, gas and metering remote sensors driven by environmental energies based on energy harvesting voltage transformers like LTC3108/LTC3109
- Sensors with predictive battery replacements in applications which are difficult to access
- Energy self-sufficient supply using subsequent installed sensors for energy harvesting

Dimensions: [mm]

Electrical Properties:											
Order Code	L ₁ (μΗ)	Tol. L ₁	L₂ (μΗ)	Tol. L ₂	n	I _R (A)	I _{sat} (A)	R _{DC1 typ.} (Ω)	R _{DC1 max.} (Ω)	R _{DC2 typ.} (Ω)	R _{DC2 max.} (Ω)
74488540070	7	±20%	70000		1:100	1.9	1.3	0.085	0.095	205	240
74488540120	13		33000	±20%	1:50	1.7	1	0.09	0.1	135	155
74488540250	25		10000		1:20	1.5	0.7	0.2	0.24	42	48

In: Rated Current ; Ist. Saturation Current ; L1: Inductance 1; L2: Inductance 2; n: Turns Ratio; RDC1 max.: DC Resistance 1; RDC1 max.: DC Resistance 1; RDC2 max.: DC Resistance 2; RDC2 max.: DC Resistance 2; TOL Resistance 2;

Transformer designed on EP7 cores are available on request – Order code: 760370096, 760370097, 760370098 During design stage of this series, we used S11100032, S11100033 & S11100034. With our standard series we have replaced these order codes.

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Where is it useful?

- Where line power is unavailable or costly
- Where batteries are costly or difficult to replace
- Where energy is needed only when ambient energy is present

Asset Tracking/Monitoring

Source: LTC - Sam Nork – Energy Harvesting Presentation 22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

© All rights reserved by Würth Elektronik eiSos GmbH & CO.KG, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Plant Automation

Remote Monitoring

TPMS

www.we-online.de

Industrial Application

- TSP300-W with Energy Harvester the first autonomous Wireless temperature sensor.
- Enables the easy addition of temperature measuring points throughout operations.
- Shorten installation times by eliminating complex wired infrastructure and lower overall implementation costs of process measu wireless devices

Measurement & Analytics | Measurement made easy The Energy Harvester Enabling truly autonomous temperature measurement

Source: ABB

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Energy Harvested Application

- Customer feedback for EH projects:
 - Total amount of harvested energy: min 50µW up to 200mW
 - The highest harvested energy was 5W using Solar cells

Devices are:

- Aftermarket solutions for Portable Navigators & Mobile Phones (Solar)
- GSM/GPS module (5W Solar)
- Window status monitoring for Hotels and Homes (Solar)
- Chainsaw electronic at engine (TEG)
- High Voltage cable status (Magnetic field)
- Water purification plant PH measuring (chemical)
- Temperature measurement for engines (TEG)
- Object tracking at airport (Piezo & RF-ID)

Source:© Fraunhofer IMS

22.01.2018 LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

L'Oreal UV sense

The device is battery-free electronic UV sensor and it's small enough to wear on one of your nails. Using NFC, the device can connect to your phone and deliver log data on sun exposure.

Source: L'Oreal

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Energy Harvesting Healthcare Application

Pacemaker

Source: Prof John A. Rogers University of Illinois

22.01.2018| LF

Another application for Harvesting?

Source: http://www.joaolammoglia.com/concept/1/aire-concept/

22.01.2018| LF | CONFIDENTIAL | FOR CUSTOMERS OF WÜRTH ELEKTRONIK ONLY | Energy Harvesting FED

Energy Harvesting Evaluation Boards: "Gleanergy" p/n: IC-744 888 "To Go" Kit p/n: IC-744 885

or visit: www.we-online.com/harvesting

or at our local distributors: www.farnel.de www.digikey.com www.mouser.com

